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Solving the time-dependent Schro¨dinger equation: Suppression of reflection
from the grid boundary with a filtered split-operator approach

P. Tran*
Research and Technology Group, Code 4B4000D, Naval Air Warfare Center Weapons Division, China Lake, California 935

~Received 15 June 1998!

We present the split-operator approach, with an additional filtering step, for solving the time-dependent
Schrödinger equation that significantly suppresses the backreflection of waves from the grid boundaries.
@S1063-651X~98!01712-7#

PACS number~s!: 02.70.2c
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Currently the split-operator technique@1# is the most
popular method for solving the time-dependent Schro¨dinger
equation. It is very efficient if the system being studied do
not involve any free~unbound! states. It, as well as any othe
numerical methods, does not have a satisfactory way of h
dling unbound states because of its finite-size grid. Refl
tion from the grid boundary back into the interior is always
problem. There are two ways to handle this problem. T
first way is to use a grid large enough such that the reflec
waves will not reach the region of interest before the sim
lation is done. This is clearly not a good solution because
certain cases, such as in long interaction processes, the
would have to be so big that it is impractical to impleme
The second way, which is used often, is to put an absorb
potential at the grid boundary to absorb the wave pac
Unfortunately, the absorption is not always 100%. As
example, we show in Fig. 1 the evolution of a wave pac
that starts out at the center of a static potential. The st
potential only has one bound state, so the wave packet
superposition of the lone bound state and continuum sta
Details of the problem and the calculation will be describ
later, but in Fig. 1 we see the unbound part of the wa
packet starts to move out of the static trapping potential
to the right. There is an absorbing potential at both ends
the grid. As the wave packet hits the right absorbing pot
tial, reflection is generated. The reflected wave then tra
back toward and through the trapping potential. This art
cial reflection will contaminate any simulation result invol
ing transition between the bound state and the continu
An example of a bound to continuum transition situation
IR excitation and dissociation of molecular bonds. In ge
eral, the amount of reflection depends on the absorbing
tential as well as the velocity of the wave packet when
approaches the absorbing potential. Tailoring the absorb
potential can always be done, but prior knowledge of
wave packet’s velocity is not always possible. In this pa
we describe a modification to the split-operator techniq
that suppresses reflection generated by the absorbing p
tial.

We begin with a recap of the split-operator technique. T
system we want to simulate is the time-dependent Sc¨-
dinger equation,
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]c~x,t !

]t
5F p2

2m
1V~x,t !Gc~x,t !5H~x,t !c~x,t !. ~1!

From now on we will assume\51 and everything else is
dimensionless. For a time step small enough so that the
tential can be taken as constant, Eq.~1! can be integrated to
give

c~x,t1Dt !5exp@2 iH ~x,t !Dt#c~x,t !. ~2!

Given the initial wave function, Eq.~2! is the recipe for
getting the wave function at all subsequent time. The sp
operator technique approximates the right hand side of
~2! with

exp@2 iH ~x,t !Dt#'exp@2 iV~x,t !Dt/2#

3exp@2 ip2Dt/2m#

3exp@2 iV~x,t !Dt/2#. ~3!

The error in using Eq.~3! is O(Dt3). The operation of the
first and last exponential in Eq.~3! on the wave function is
just straightforward multiplication. The middle exponenti
can be performed using fast Fourier transform~FFT! as in
the original formulation of the split-operator technique@1# or
done entirely in real space@2#. We have used the FFT ap
proach to generate the result shown in Fig. 1. For that c
the trapping potential has the form

Vtrap~x!5
@~2s11!221#

8mW2

1

cosh2~x/W!
. ~4!

The number of bound states for this potential@3# is n11
wheren is the largest integer smaller than the parametes.
We choses50.1, so there is only one bound state. The wid
parameterW is taken to be 0.2. The absorbing potential is
Gaussian

Vabs~x!52 i
10

dt
exp@2~x2xc!

2/~8Dx!2#, ~5!

wheredt50.01 is the time step,Dx50.02 is the spatial reso
lution, andxc is the center is the absorbing potential. W
chose the center to be a distance of 0.8 from either end o
grid. The length of the grid is 20.48~1024 points on the
grid!. The initial wave function is
8049 © 1998 The American Physical Society
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c~x,0!5
1

N
exp@ ik0~x2x0!2~x2x0!2Dk2/4#, ~6!

whereN is a normalization factor,k051.0, x050, andDk
52.0. The massm is taken to be 1.0. Given this initial wav
function and the potential, we use the split-operator te
nique to produce the result shown in Fig. 1.

The idea for reducing reflection from the absorbing pot
tial is based upon the fact that these reflected waves origi
near the absorbing potential. So if we can filter them out
they are being generated then they will not reach the inte

FIG. 1. Plot of the the wave function, with no filtering, at var
ous times. The depiction of the trapping and absorbing potentia
for visual purposes only, and their strengths are not to scale. N
that all quantities are dimensionless.
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region of the grid. To do this we split the wave function in
a right and a left traveling part

c~x!5E
0

`

dk c~k!eikx1E
2`

0

dk c~k!eikx

5c1~x!1c2~x!. ~7!

After each time step we perform a filtering operation as f
lows. For the absorbing potential on the left~right! end of the
grid, we subtract from the wave function the1 ~2! part of
the wave function,

cfilter~x!5c~x!2c2~x!, near the right boundary,
~8a!

FIG. 2. Plot of the wave function, with filtering, at variou
times.re
te
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cfilter~x!5c~x!2c1~x!, near the left boundary.
~8b!

The region where the subtraction is carried out is limited t
small distance near the absorbing potential. This is to prev
spurious alteration to the bound state of the problem. In o
words, the region where the subtraction is performed sho
be far enough away such that there is no probability of fi
ing a bound state there. In this paper we use a distance o
from the center of the absorbing potential for the subtract
region. In summary the absorbing potential will absorb, w
some reflection, any wave traveling away from the interior
the grid, and the filtering operation will remove the reflect
waves traveling toward the interior of the grid. The abso
ing potential ensures that the wave function is zero at
boundary, so that we can get an accurate Fourier transfo

The result of this filtering operation on the same syst
corresponding to Fig. 1 is shown in Fig. 2. Notice the lack
the rippling that indicates reflected waves, particularly to
left of the trapping potential. In panel~c! we see the bound
state sloshing back and forth in the well. In the subtract
region near the absorbing potentials, we have an enha
ment of the wave function which we currently do not und
stand. In this region the probability just grows to some va
and decays but does not seem to leak into the interior of
grid. The lack of leakage is not surprising since by constr
tion this region can only move toward and not away from
absorbing potential. This artificial enhancement in the filt
ing region does not always occur as we will show in the n
example of a free wave packet. To really see how much
filtering operation removes the reflected waves, we study
propagation of a free wave packet. In Fig. 3 we show
propagation of the free wave packet withm55.0 andk0
55.0 on a grid of length 10.24~512 grid points!. If the
simulation was done on an infinite grid, the probability
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finding the particle in the region24,x,4 will be zero after
t59.0 because the particle will have moved out of this
gion. Without the filtering, there is a significant part of th
wave packet left in the grid att59.0 because of reflection
With filtering, the result is indistinguishable from 0 on th
plot. We integrate over the grid to find the total probability
the filtered case, and it is less than 231023.

In conclusion, we have described a filtering step for t
split-operator approach that can enhance the suppressio
reflection from grid boundaries. This is of great utility fo
simulation involving continuum states.

This research is supported by the U.S. Office of Na
Research under Contract No. N0001498WX20485, and
the High Performance Computing Modernization Offi
through a grant of computer time at the Naval Unders
Warfare Center.

FIG. 3. Plot of the wave function att50 and att59 in absence
of the trapping potential. The solid line corresponds to no filteri
The result with filtering att59 is indistinguishable from zero a
this scale.
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