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Solving the time-dependent Schrdinger equation: Suppression of reflection
from the grid boundary with a filtered split-operator approach

P. Trarf
Research and Technology Group, Code 4B4000D, Naval Air Warfare Center Weapons Division, China Lake, California 93555
(Received 15 June 1998

We present the split-operator approach, with an additional filtering step, for solving the time-dependent
Schralinger equation that significantly suppresses the backreflection of waves from the grid boundaries.
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Currently the split-operator techniqud] is the most o O(X,t)
popular method for solving the time-dependent Sdhnger ity g
equation. It is very efficient if the system being studied does
not involve any fredunbound states. It, as well as any other From now on we will assumé=1 and everything else is
numerical methods, does not have a satisfactory way of hardimensionless. For a time step small enough so that the po-
dling unbound states because of its finite-size grid. Reflectential can be taken as constant, L. can be integrated to
tion from the grid boundary back into the interior is always agive
problem. There are two ways to handle this problem. The )
first way is to use a grid large enough such that the reflected P(x,t+At)=exd —iH (X, ) At]h(x,1). )

waves will not reach the region of interest before the simu- .. . . .
aves otrea e region of interest before the . Given the initial wave function, Eq(2) is the recipe for

lation is done. This is clearly not a good solution because in__, . . : .
certain cases, such as in long interaction processes, the g ting the wave function r?\t all subsequent tme. The split-
' ' erator technique approximates the right hand side of Eq.

2
IO—JrV(x,t)

o YD =HOO Y. (D)

would have to be so big that it is impractical to implement. (2) with

The second way, which is used often, is to put an absorbing

potential at the grid boundary to absorb the wave packet. exd —iH (x,t)At]~exd —iV(x,t)At/2]
Unfortunately, the absorption is not always 100%. As an S

example, we show in Fig. 1 the evolution of a wave packet Xexd —ip“At/2m]

that starts out at the center of a static potential. The static x ex —iV(x,t)At/2]. @)

potential only has one bound state, so the wave packet is a

superposition of the lone bound state and continuum stateshe error in using Eq(3) is O(At®). The operation of the
Details of the problem and the calculation will be describedfirst and last exponential in E43) on the wave function is
later, but in Fig. 1 we see the unbound part of the wavgust straightforward multiplication. The middle exponential
packet starts to move out of the static trapping potential andan be performed using fast Fourier transfoffdfrT) as in

to the right. There is an absorbing potential at both ends ofhe original formulation of the split-operator technidug or
the grid. As the wave packet hits the right absorbing potendone entirely in real spade]. We have used the FFT ap-
tial, reflection is generated. The reflected wave then travelproach to generate the result shown in Fig. 1. For that case,
back toward and through the trapping potential. This artifi-the trapping potential has the form

cial reflection will contaminate any simulation result involv-

ing transition between the bound state and the continuum. [(2s+1)°—1] 1

An example of a bound to continuum transition situation is Virarl X) = 8mW?  cosH(x/W) " @

IR excitation and dissociation of molecular bonds. In gen-

eral, the amount of reflection depends on the absorbing poFhe number of bound states for this potenfid] is n+1
tential as well as the velocity of the wave packet when itwheren is the largest integer smaller than the paramster
approaches the absorbing potential. Tailoring the absorbing/e choses=0.1, so there is only one bound state. The width
potential can always be done, but prior knowledge of theparameteiV is taken to be 0.2. The absorbing potential is a
wave packet’s velocity is not always possible. In this papeiGaussian

we describe a modification to the split-operator technique
that suppresses reflection generated by the absorbing poten-
tial.

We begin with a recap of the split-operator technique. The
system we want to simulate is the time-dependent Schrowvheredt=0.01 is the time stegdx=0.02 is the spatial reso-
dinger equation, lution, andx. is the center is the absorbing potential. We

chose the center to be a distance of 0.8 from either end of the
grid. The length of the grid is 20.481024 points on the
*Electronic address: phuc@peewee.chinalake.navy.mil grid). The initial wave function is

10
VapdX)=—1 4 ex — (x—xc)?/(8A%)?], ®
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FIG. 1. Plot of the the wave function, with no filtering, at vari-

ous times. The depiction of the trapping and absorbing potential arémes.
for visual purposes only, and their strengths are not to scale. Note

that all quantities are dimensionless.

1
P(x,0) = N exfiko(X—Xo) — (X—Xo)?Ak?/4],

region of the grid. To do this we split the wave function into
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a right and a left traveling part

®) Y0 = f:dk k)& f

whereN is a normalization factork,=1.0, Xo=0, andAk

=i (X)+p_(X).

=2.0. The massnis taken to be 1.0. Given this initial wave after each time step we perform a filtering operation as fol-

0 )
dk ¢(k)e'k*

FIG. 2. Plot of the wave function, with filtering, at various

)

function and the potential, we use the split-operator techioys. For the absorbing potential on the lgfght) end of the

nigue to produce the result shown in Fig. 1.
The idea for reducing reflection from the absorbing potenthe wave function,
tial is based upon the fact that these reflected waves originate

near the absorbing potential. So if we can filter them out as

grid, we subtract from the wave function the (—) part of

they are being generated then they will not reach the interior

Wtitter(X) = (X) — h_(X),

near the right boundary,

(8a)
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Uriter( X) = (X) — ¥, (x), near the left boundary. 002 = ' T
(8b) [ Lr;a=55535.0

0015 | Ak=20
The region where the subtraction is carried out is limited to a [
small distance near the absorbing potential. This is to prevent [ow-o2
spurious alteration to the bound state of the problem. In other
words, the region where the subtraction is performed should
be far enough away such that there is no probability of find-
ing a bound state there. In this paper we use a distance of 2.0
from the center of the absorbing potential for the subtraction
region. In summary the absorbing potential will absorb, with SRYS
some reflection, any wave traveling away from the interior of i )
the grid, and the filtering operation will remove the reflected 0005 - » - 5 2 . .
waves traveling toward the interior of the grid. The absorb- X
ing potential ensures that the wave function is zero at the ;5 3 pjot of the wave function a0 and at =9 in absence

boundary, so that we can get an accurate Fourier transforny e trapping potential. The solid line corresponds to no filtering.

The result of this filtering operation on the same systeMrpe result with filtering at=9 is indistinguishable from zero at
corresponding to Fig. 1 is shown in Fig. 2. Notice the lack ofinis scale.

the rippling that indicates reflected waves, particularly to the

left of the trapping potential. In panét) we see the bound finding the particle in the region 4<x<4 will be zero after
state sloshing back and forth in the well. In the subtractiorf=9.0 because the particle will have moved out of this re-
region near the absorbing potentia|sl we have an enhanc8lon. Without the_fllterlng,_ there is a Slgnlflcant part O_f the
ment of the wave function which we currently do not under-Wave packet left in the grid &t=9.0 because of reflection.
stand. In this region the probability just grows to some valugWVith filtering, the result is indistinguishable from 0 on the

and decays but does not seem to leak into the interior of th lot. We integrate over the grid to find the total probability in

. : - . the filtered case, and it is less thax 207 2.
rid. The lack of leakage is not surprising since by construc- o ) S
g J P g y In conclusion, we have described a filtering step for the

tion this region can only move toward and not away from thes lit-operator approach that can enhance the suppression of
absorbing potential. This artificial enhancement in the filter- piit-op PP : - ppre
eflection from grid boundaries. This is of great utility for

ing region does not always occur as we will show in the nex{;imulation involving continuum states
example of a free wave packet. To really see how much the ’
filtering operation removes the reflected waves, we study the This research is supported by the U.S. Office of Naval
propagation of a free wave packet. In Fig. 3 we show theResearch under Contract No. N0O001498WX20485, and by
propagation of the free wave packet with=5.0 andk, the High Performance Computing Modernization Office

=5.0 on a grid of length 10.24512 grid pointg. If the  through a grant of computer time at the Naval Undersea
simulation was done on an infinite grid, the probability of Warfare Center.
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